
NASA TN D-70 

7AJ -7% 

J r .  

TECHNICAL NOTE 
0-70 

GRAVITY TORQUE ON AN ORBITING VEHICLE 

By Brian F. Doolin 

Ames Research Center  
Moffett Field, Calif. 

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION 

WASHINGTON September 1959 

( B A S A - T h - C - 7 0 )  G S A W I ' I P  'ICICLE C E  A #  
C E E X T I Y G  V E H I C L I  ( B A Z A )  47 f 

B 8 9 - 7 0 5  1 1  ' 

Unclas  
00/18 0195407 



LX NATIONAL -4ERONA-UTICS PJYD SPACE ADMINISTRATION 

R *  

k 

., 

I -  

d 

GRAVITY TORQUE ON AN ORBITING VEHICLE 

By Brian F. Doolin 

SUMMARY 

The potential energy of a small body moving under the influence of 
only the earth’s gravity field is derived. It is shown that the effects 
of earth and body oblateness are separate to terms of second order in 
the potential energy function. The invariance of the potential energy 
under orthogonal transformations is discussed and is used to simplify 
calculations of the terms in the potential function. The equations of 
motion of the vehicle are obtained in generalized and in body coordinates. 
The components of torque in body coordinates are obtained by a transforma- 
tion determined by the invariance of rotational power. Two applications 
of the equations of motion in body coordinates are made. They are first 
used to show that an energy integral does not exist for these equations 
since they are derived with respect to the satellite mass center. Then 
they are applied in simplified form to an examination of the stability 
of a vehicle in a circular orbit. 

The utility of artificial satellites can be greatly enhanced by 
maintaining guidance and control over them. 
of studies have been made of the problem of keeping the vehicle, or some 
of its contents, pointed in a particular direction. A review of the 
literature of the subject has been given by Roberson in reference 1. 

For this reason, a number 

The first problem in the study of satellite control is the 
quantitative determination of the torques disturbing the satellite, and 
the reaction of the satellite to the torques. Evaluations of the magni- 
tudes and effects of many sources of torque, such as meteorites or 
electric and magnetic fields, must await more experimental information. 
But rough estimates given by Roberson in reference 2 indicate that, 
except for special designs, the latter two sources will be small compared 
to torques due to gravity and atmosphere. The effect of the atmosphere, 
which of course predominates at the lower altitudes, has been studied by 
DeBra (ref. 3) for certain satellite shapes. 

The torque source most enduring for an orbiting vehicle, and most 
frequently mentioned, is the gravitational field of the earth. That a 
torque on an elongated satellite arises from this source was learned 
more than two centuries ago (ref. 4) in connection with the librations 



of the moon. Roberson and Tatistcheff have recently made a more complete \ 

study of this source of torque in reference 5 .  
torque-generating terms retained in the potential function of this refer- 
ence are small enough to be ignored in a stability study, particularly 
if the satellite has provisions for control. The present report shows 
that if the small terms, which arise from the oblateness of the earth, 
are neglected, an invariance property manifests itself that greatly reduces 
the labor of expressing the potential energy in terms of the moments and 
products of inertia about axes fixed in the satellite. 

However, some of the 
\ 

u. 

The purpose of the present report is to calculate the equations of 
motion of a satellite not for purposes of orbital studies but in a form 
convenient for stability studies. The equations will be derived twice; 
first in terms of the Euler angles chosen, then in terms of body coordi- 
nates. 
kinetic energy functions in both cases. 

The equations of motion will be derived from the potential and 

The order of development in this report is as follows. The potential 
and the kinetic energy functions are derived in a form independent of 
particular coordinate systems. A particular geometry is selected in the 
next section, and the functions are expressed in terms of the chosen 
parameters. 
coordinates by applying Euler's equation to the Lagrange function of the 
kinetic and potential energies. 
in terms of body coordinates. 
from the kinetic energy, but more consideration must be given to expressing 
the torque, derived from the potential, in terms of body coordinates. 
The torque transformation law is obtained on the basis of the invariance 
of power and then is applied to give the torque components in body coor- 
dinates. 
and is shown not to exist. The final section of the report applies the 
derived equations to the stability of oscillation of a symmetrical body 
in a circular orbit. 

Next the equations of motion are obtained in generalized 

Then the equations of motion are obtained 
The inertial terms can be obtained directly 

I 

The energy integral is briefly discussed in the next section 

a 

e 

distance between earth and satellite mass centers 

an inertial Coordinate system centered at the earth's mass 
center 

G universal constant of gravitation 

Ie matrix representing earth inertia with respect to axes fixed 
in the earth . 

IS matrix representing satellite inertia with respect to axes , 
fixed in the satellite 
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IS' matrix representing satellite inertia with respect to fixed 
earth coordinates 

I s" matrix representing satellite inertia with respect to the p 
coordinate system 

K . E .  kinetic energy 

L Lagrangian (K.E. - V) 

L,MJ components of gravity torque in body coordinates 

Me mass of the earth 

m mass of the satellite 

p79,r cornponents of satellite anNar velocity vector in 
satellite body coordinates 

R effective earth radius 

S as subscript or superscript, coordinate system fixed in the 
satellite 

S Laplace transform variable 

av , and - - , av 
rp' 6 '  v acp ae aJr t - -  T..T..T- components of torque, equal to - dV - 

respectively 
- 
U satellite mass center velocity 

- 
UPV7W components of u in the s coordinate system 

V potential energy function 

term of the potential energy function independent of cp,  0,  'trans and $ 

Vrot term of the potential energy function containing cp,  0 ,  and Jr  

a,P,y,G systems of coordinates intermediate to the inertial, e, and 
satellite , s , coordinates (see below) 

v differential operator 

@,Y angles determining position of satellite mass center (see 
below) 

e,q,cp angles determining the orientation of the satellite (see below) 
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\ P earth potential form factor 

angular velocity line from earth to satellite mass center with $3 -e 
respect to inertial space of P coordinate system 

c is  -e angular velocity of j3 coordinates with respect to inertial 
space 

1,2,3 labels of any right-hand triad of unit vectors (as subscripts, 
the components of a vector associated with the pertinent 
unit vector ) 

a vector 

a rotation matrix, the rotation being specified by the angle 
enclosed 

-e -a 
3 7  -B Definitions of Coordinates 

Three coordinate systems are 
of chief interest in the report. * 
They are: the e system, which is 

rotating earth; the j3 system, along .. 
the 3 axis on which the satellite 

system, which is rigidly attached to 

’-- an inertial system fixed in a non- 
&; 2e 

/ \ ria mass center is located; and the s 

Y the moving satellite. 
i@ 

ie 

The relationship between the 
Sketch (a) e system and the f3 system is shown 

in sketch (a). The sketch shows that 
the j3 system is obtained from the 
e system by a rotation through the 
angle Y followed by a rotation 
through the angle 0 .  

-7 -6 -B 
3 =3 

The relationship between the 
l3 system and the s system is shown 
in sketches (b) and (e). 
shows that a y system is obtained 
from the f3 system by the angle of 
rotation 8. A 6 system is then 
obtained by the angle as shown. . 
Thus the axes 3e, 3a, 3P, 3?, and 36 

Sketch (b) d 

Sketch (b) 
e 

-7 1 
i6 
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m 

lie in the same plane. Sketch (c) 

. obtained shows that from the the s 6 system system is by a 3 y 4  
rotation through the angle Cp. 
These s coordinates are the 
satellite body coordinates. P: I ’  1 2 6  DERIVATION OF THE LAGRANGIAN 

RTNCTION 

1 k l S  

Sketch (c) 
The two methods commonly 

employed in classical mechanics 
for the formulation of the equa- 
tions of motion of a dynamical 
system are the force method of Newton and the kinetic potential method 
of Lagrange. In the former method, each part of a body is isolated and 
its acceleration is expressed as being equal to the resultant of all 
impressed and constraining forces. 
are in a force field and have several degrees of freedox, or the inter- 
action of the various parts is obscure, use of this method is a delicate 

When the various parts of the body 

operation with many hidden difficulties. 

The Lagrangian method will be followed in this report because it is 

The first step to be taken in this method 
better suited to the present problem of calculating the equations of 
motion of an earth satellite. 
is the determination of the so-called kinetic potential, or tile iagraiigian, 
a function that is simply the difference between the kinetic and the 
potential energies of the system. 

The next step is the formulation of the equations of motion which 
depends on the type of coordinates in which the Lagrangian is expressed. 
If it is expressed in generalized, that is mutually independent, coordi- 
nates, the equation for each coordinate can be obtained from the 
Lagrangian by a fixed procedure. If nonintegrable coordinates are used, 
such as the angular rates about three orthogonal body axes in the aircraft 
moment equations, the procedure is less simple. 

Potential Energy Derivation 

This section contains the development of the potential energy 
function as far as it can proceed without the specification of a partic- 
ular coordinate system. The derivation is patterned after the multipole 
expansion given in appendix VI of reference 6. This pattern is followed 
more closely in the appendix of this report than in this section. There 
the treatment is more explicit, being expressed in terms of the Cartesian 
components of the various particles making up the satellite. But this 
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% 
greater explicitness obscures both the nature of the development and the 
invariance of form of terms which is exhibited by the more general treat- 
ment of this section. .L 

The derivation consists of a Taylor’s expansion of the inverse 
distance factor in the formula for the potential energy of two isolated 
masses, and an integration over the mass distributions of the earth and 
the satellite. The expressions simplify under the integration if the 
centers of mass of the two bodies are chosen as a reference. The result 
of the calculation is an equation with three terms. The first term gives 
the potential energy of the two bodies as though each were condensed to 
the position of their mass centers. The other two terms correct this 
simplification to account for the distributions of mass, one term for the 
earth, the other for the satellite. 

The mass distribution of the satellite is a function of its 
orientation with respect to the earth, that is, of its rotational motion. 
To express this distribution in terms of quantities that can be measured 
in the body, the moments and products of inertia expressed in body coordi- 
nates, would be a lengthy task except for the simple form in which it 
appears in the potential. This simplicity will make it easy to show that 
the term preserves its form under orthogonal transformations. The invari- 
ance of form thus shown means that the factors in the term can be expressed , 
in any consistent set of coordinates - body coordinates, for example - 
without any complications. 

The potential energy of two separate mass distributions, the earth 
of mass Me, and the satellite of mass m, is given by the expression 

V = -GJ”p””. 

where G is the universal gravity constant, p is the distance between 
elementary mass points, and are the masses associated with 
each point of the two bodies. The function f ( p )  = l / p  can be expanded 
in a Taylor’s series about the center of mass of the satellite relative 
to the center of mass of the earth. The expansion can be expressed 
succinctly in the form 

dM, and dm 

The quantities appearing in this expression are thought of as being 
expressed in Cartesian terms; thus 

.. 
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2 2 -112 f(d = C(X + E '  - x') + (y  + 7' - y q 2  + (2, + 5 '  - z') 3 

-112 
f ( a )  = (x2 + y2 + 2 2 )  

As shown in sketch (d), the coordinates (x ' ,y ' ,z ' )  refer an earth mass 
point to its mass center. The coordinates (x,y,z) give the location of 

- 
1 

Sketch (d) 

the satellite mass center. 
mass point to its center of mass. 
the operation of gradient appear is considered to be a fixed Cartesian 
space with u n i t  vectors i, P ,  and 7. Because of the linear occurrence 
of x ' ,  x, and E ' ,  the operation a / a x  
and 

The coordinates ( 5  ,7) I, 5 ' ) refer a satellite 
The space in which the quantities and 

can be used for -a/axf and a/aE I, 

f ( p )  can be evaluated before the gradient operation. 

To obtain the potential energy, one multiplies equation (2) by 
-G dm dMe 
equation (1). 

and integrates over both sets of masses as indicated in 
The following expressions result: 



a 

The terms V, and higher that would appear in the xpansion of V are 
neglected as small compared with the lower terms. 
in the integration because both F and F' refer to their centers of mass. 
The quantities 
of the earth and satellite, respectively, in the fixed coordinate system. 

Equation (3b) vanishes 

I, and Is' are representations of the inertia tensors 

To complete the derivation of equation (3c), let it first be noted 
that 

Since the last two terms, when multiplied by dm dMe and integrated, 
vanish for the same reason as did equation (3b), attention can be centered 
on the first two terms on the right. Either of these terms can be trans- 
formed by the identity b-VP = V-bp - PV-b where P is a scalar and b 
any vector. Using this identity one sees that 

- The divergence of r ,V.F is zero because the derivative is calculated 
with respect to the coordinates of a, not of r. Multiplying 
V.[rF*Vf(a) 1 by - dm dMe and integrating, one has 

- - 

2 
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which is the term appearing in equation (3c). 
step given is shown explicitly in the alternate derivation given in 

V- sFF-Vf(a)dm and noting that V2f(a) = 0. The change of sign results 

from the definitions of the moments and products of inertia, namely: 

The validity of the last 

)I appendix A. Confirmation follows writing out the expression 

Now that the derivation has been completed, the potential energy 
function can be written. It is expressed by 

3efore this cxprecsim CSE he used in the Lagranngian, its functional 
dependence on the coordinates must be made explicit. Since coordinates 
have not yet been chosen for the problem, this explication is postponed 
to a later section. In the meantime, two interesting points should be 
noted concerning the potential function given. One point is that, to the 
order of expansion of the potential energy as given here (determined by 
stopping the series expansion of 
mass distributions of earth and satellite are separate. This separation 
will later be seen to imply that the oblateness of the earth does not 
yield a component of torque about the satellite vehicle, but only affects 
its orbit. 
percent of the terms retained. 

f ( p )  in eq. (2)), the effects of the 

The neglected terms are of the order of a fraction of a 

The second point to be noted from equation (4) is its invariance. 
Each term of the potential function, being a scalar, should be invariant 
both in form and value under a simple rotation of coordinates. The first 
term on the right clearly is invariant, being merely a length. That the 
other terms are invariant also can be seen f rom what follows. Let 0' 
be the gradient operator in another coordinate system related to the 
first in such a way by the orthogonal transformation, T, that V = TV'. 
Now, in the matrix formalism being used, the divergence operator is the 

T transpose of the gradient 0. = V . It undergoes the transformation 
VT = Now, since the transpose and the inverse of the matrix T 
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are the same, the inertia matrix has the following transformation 
T IT = 1'. 
these transformations in this way: 

Y 

T The invariance of the expression follows from putting together 
. 

VTIVf(a) = (TVt)TI(TV1)f (a) 

= VtTflITVf (a) 

This property will be useful later in simplifying the calculation of the 
potential term involving the satellite. 

Kinetic Energy Derivation 

This section contains the derivation of the expressions for the 
kinetic energy of the system. 
in that the derivation will be carried only up to the point where a 
particular system of coordinates needs to be chosen. 

The expressions will be general, as before, 

The kinetic energy of the satellite is given by the expression 
- dm7-T. The vector v is the total velocity of the mass point 

-s -e dm, and can be expressed as G = U + 0 x F. Here u is the total - 
-s -e 

velocity of the satellite mass center and 0 
of the satellite. The superscript notation anticipates the notation to 
be used later in formulating the geometry of the problem. Then it will 
be seenthat s refers to a coordinate system fixed in the satellite, 
and e refers t o  an inertial system centered at the center of mass of 
the earth. The kinetic energy expression becomes 

is the angular velocity 

Because F is measured from the mass center 

-s-e dmi.i.0 s 
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. 

we have 

where Is is a representation of the inertia tensor of the satellite. 
It differs from the quantity Is' of the previous section in that it is 
given with respect to a set of coordinates fixed in the body, whereas the 
inertia representation of the previous section is given in a fixed space. 
The kinetic energy, in summary, is then 

-s-e K.E. = c2 + .IsEs-e 
2 2 

This expression is the one that can be used in deriving the equations of 
motion in body coordinates. 

- For the generalized coordinate expression, the velocity u is 
further expanded to the expression 

+-e i i = a + n  x a  

Here Z is the vector position of the satellite center of mass relative 
to the earth mass center. It is fixed in a coordinate system which is 
rotating about the earth mass center with an angular velocity . 
The velocity T, refers to that par t  of the total velocity of the 
satellite mass center that could be observed by a person attached to the 

coordinates rotating with angular velocity R . Squaring u gives 

-P-e 

-P -e - 

(7) 
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- The middle term on the right is zero because 
When the expression in (7) is put into equation (6 ) ,  the kinetic energy 
expression appropriate for generalized coordinates is 

a and are collinear. \ 

- 

Calculation of Kinematic and Inertial Quantities 

The derivations in the previous two sections were developed as far 
as possible without specifying the coordinates of the particular problem. 
This section will be devoted to a choice of coordinates and to expressing 
the kinematic and inertial quantities appearing in the potential and 
kinetic energy expressions in terms of the parameters of the chosen 
coordinates. 

The satellite has six degrees of freedom and requires six parameters 
to specify its motion. 
specify the location of the satellite mass center with respect to the 
nonrotat-ing earth. 

The first three parameters can be chosen to 

A possible set of parameters is depicted in sketch (e). 

? S a t e l l i t e  mass center 

Ea r th  mass 
center P F \ * z =  

/ \\ \ /. 

Sketch (e) 

-e The unit vector 3 
ie and pe 
mediate triad of unit vectors, not shown in the sketch, 1 , 2 , 3 , is 
obtained from the superscript e set 1 , 2 , 3 (which will be referred 
to as the e system henceforth) by a positive rotation about the 
-e 3 = 7" direction through the angle I. From this set the set is 

lies along the earth's polar axis. The unit vectors 
form a right-handed inertially fixed set with Te. A n  inter- 

--a --a --a - 
-e -e -e 

c 



obtained by a positive rotation about the 2a = 2' 
angle 0 .  The angles Y and 0 are to be generated in such a way that 
the vector a 
the 3p direction. This choice of coordinate systems is not suited to 
orbital studies but is convenient f o r  the study which is primarily 
interested in the rotational motion of the satellite. 

direction through the 
- specifying the location of the satellite always lies along 

The orientation of the satellite will be specified by the pitch, 
yaw, and roll angles 
this figure show that a set of vectors 
P set by a positive pitch rotation 8 about the 5' = F7 direction. 
Parts b and c show that a 6 set is obtained in turn from the y set 
by a positive yaw rotation about the T7 = direction. Finally, 
the figure shows that the s set is obtained from the 6 set by a 
rolling through the angle Cp about the is = i' direction. It should 
be noted that the definitions given here for the positive directions of 
the axes differ from those usually assumed for an airplane. If an air- 
plane were heading in the direction of the 1' axis, the 3' axis would 
point up through the canopy, and the 2' 
wing of the airplane. 

8 ,  9 ,  and cp shown in figure 1. Parts a and b of 
i7, Fy, 5' is obtained from the 

axis would point along the left 

The following equations relate the different coordinates and 
transformations. 
(ref. 7). 

The angles in parentheses represent rotation matrices 

is 

= ( 0 )  

= (d  

, .  
ia 
-a 2 
-a 
3 
. I  

i6 

56 

-6 2 

(9)  

. 
These equations suwnarize the geometry of the problem. 
shown in them will now be used to calculate the functional dependencies 
of the terms V * Is'Vf (a), zp-e x x Z, and Q IszS-e. 

The relationships 

-s-e 
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Calculation of V*Is'Vf(a) .- Equation (As) of appendix A shows that -r 

where xyz are the components of .Z in the e system 

- 

trace I,' 

(AB) 

and the moments 
and products of inertia of the satellite are expressed in the same system. 
According to what has been said earlier, equation (AB) is unaltered if 
xyz are the Components of Z in the s system and the inertial quanti- 
ties are those of the satellite in the same system. These inertial 
quantities are constants in the body, and some of them may be zero. For 
purposes of example, it will be assumed that the x - z plane is a plane 
of symmetry and therefore I,, = I,, = 0. 

- A l l  that remains to be done is to express the position vector a 

B = (cp)(9)(6) be the transformation matrix from 
in satellite coordinates so that x, y, and z are expressed in terms of 
a, 9 ,  8 ,  and 9.  
the P coordinates to the s coordinates, so that as = Bap, where as 
is the matrix representation of the vector a in the s coordinates. 
Then asT = (Bag)* = ap%T. With this definition 

Let 

- 

= asTIsas 

= apTIs"ap 

= aRTBTIsBaR 
r r 

. 
Here xsyszs are the components of Z in the s system, and I" is 
the inertia tensor expressed in the p system. Now, because of the c 

form of the matrix a only the element Is", the element of Is" in P '  



the third row and third column, need be considered. For this reason, it 
will be easier to calculate BTIsB instead of Bap.  Of this transforaa- 
tion only the term B,iTIijBj, need be obtained where Bj3 is the element 
in the jth row and third column of B. Since B,iT = Bi,, only the 
elements of the third column of B need be used. The matrix B is given 

. 

by 

where c stands for cosine, and s stands for sine. Hence, 

Equation (10) gives the expression desired for the first term on the 
right in equation (A8). 
is also invariant; that is, 

The second term on the right in equation (A8) 

trace Is1' = trace Is = I1 + I, + I, 

Proof of this assertion most easily follows the recognition that 

I, + I, + I, = 2 dmr2 s 
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and that the magnitude of the position vector 
dm is invariant under a coordinate rotation. Using equations (10) 
and (11) in (A8), one gets 

F locating the mass point 
? 

- 

The same procedure could be repeated for the quantity V*IeVf(a). 
2 But this term is given empirically by 

R = 6.364~10~ meters, and IJ- = 5.64~10-* (ref. 8). Substituting the 
above quantities into equation (4) for the potential energy, one has 

Mep(R/a) (3c20 - 1) , where 

Calculation of angular rates.- The kinetic energy expression contains 
-s-e -s-e the two angular velocities R and zP-e. The quantity R can be 

written as the sum of the two angular velocitles R = R 7 

where R is the angular velocity of the satellite coordinates with 

-s-e -s-B + $-e 

4 - p  

respect to the p coordinates. Hence expressions are to be found f o r  
the two angular velocities R and $-e. The calculations in this 
section will be made in the following order. First R 
expressed in the p system in terms of Y and 6. Then it will be trans- 

-s-p formed into the s system. Then 0 will be expressed in the s 
system in terms of 

summed to give R . 

-S-p 

will be -P -e 

@ 7  G 7  and 6 ,  and the two angular velocities will be 
-s-e 

The quantity is given in terms of its Euler parameters by 
the equation = 62’ + $3“. The a, and p systems are related as 
shown in the following table. 



X 

Theref ore 

The transformation from the P system to the s system is given by 
(cp)(q) (e)  which can be tabulated as follows: 

= Writing n'me as $ -e is + F' + ngge T', one gets for its 
components 

The determination of -s-p R proceeds similarly. The quantity -S-p R 
-s -p 

is given by R = @is + + 62'. To express it in the s system, 
the transformations (rp), ( q ) ,  and (q)(lf) are needed. The coefficients 
of these transformations are tabulated below. 
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is is 

CCP scp -sq cq FS 
1 TS -S 

0 -scp ccp 

s9 0 * 

-ccpsq cqcq srp 

scpsq -scpcq crp 

s-p 7' and using (16) one 
-s-P p - p  -s s-p -s Writing as-' as R = 1s 1 + R,, 2 + R,, 

g e t s  f o r  t he  components 

Equations (17) can a l so  be wr i t ten  as matrix equations i n  the  following 
alternate f o m s  : 

where S and i t s  inverse S - I  a r e  given by 

-s-e -s-P -P-e 
The components of the  t o t a l  s a t e l l i t e  angular ve loc i ty  R = R  +R . 

a r e  obtained from equations (15) and (17). These components i n  the s 
system w i l l  f i gu re  so prominently i n  the  equations of motion that they 
w i l l  be given spec ia l  symbols. They w i l l  be ca l led  p,  q, and I: by .. 



analogy with terminology common in aircraft dynamics. Thus 

- s-e R = pis + qFS + r3' 

where 

It should be borne in mind that q and r are positive along the positive 
directions of coordinates 2' and 3'. 
usually considered positive with respect to an airplane. 

These are the negatives of what is 

-s-e -'-e Calculation of R IsES-e and x Z - R x K.- The purpose 
of this subsection is to finish calculating the kinematic and inertial 
quantities appearing in the energy expressions (4) and (8). 
point we have chosen the particular geometry summarized in (9). 
the expression for 
tion (12). 
familiar form 

Up to this 
Then 

V - Is'Vf (a) was calculated. It appears in equa- 
- s-e The first of the remaining quantities, R IsES-e, has the 

where p, q, and r are given in equations (20) and it is assumed that 
112 = I,, = 0. 

+-e x Z * R  x a. In the EO-e The final quantity to be evaluated is 

x Z = a(&? + GsBF'). 

P system Z = a?' only. Hence using equation (13), one has 
From this expression one gets, finally 
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THE EQUATIONS OF MOTION -. 

c 

The equations of motion will be obtained in this section. At first 
they will be obtained in terms of the generalized coordinates a, Y ,  0, 
0 ,  9, and Cp. Then later they will be obtained in body coordinates in 
terms of components of linear and angular velocities in the body, and 
their derivatives. 
potential energy functions are needed. The potential energy is given in 
equation (12) only. 
(21), and (22) will be used for the generalized coordinates, and 
equations (6) and (21) for the body coordinates. 

In order to obtain these equations, the kinetic and 

But for the kinetic energy, equations (8), ( 2 0 ) ,  

Equations in Generalized Coordinates 

The equations of motion are derived in the following way. Let v 
be any of the coordinates a, Y ,  0, q ,  0 ,  or Cp.  Then the equation for 
this coordinate is given by 

Where the Lagrangian function is L = K.E. - V. The potential function 
v is given in equation (12): 

1 2 1 
3 I ~ (  - S ~ S ~ S *  + CCpCe) + 21~,( -see$) (-sCpses$ + ccpce) - - ( I ~  + I, -t I ~ )  

The kinetic energy, from equations (8), (20), (21), and (221, is given 
by 

.2 .2 .2 
K.E. = a + a2(0 + Y s2o) + 1 (1,p2 + 1,q2 + + 21,,pr) 2 2 2 

where 
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The left- and right-hand sides of the equations of motion are given by: 

for a, 

f o r  Y, 

for 0, 
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for 0 ,  * 

Since the quantity characterizing the earth's oblateness does not 
appear in equations (27), (28), and (29) ,  the oblateness of the earth 
does not generate a torque about a satellite to the order of approximation 
used. When the equations are written in terms of principal axes, so that 
I,, = 0, and when the satellite roll axis is an axis of symmetry so that 
I, = I,, the equations reduce to the form . 
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. 

il$ = 0 (Fga) 

Equations in Body Coordinates 

The Lagrangian formalism can be used again to derive the equations 
of motion in body coordinates. Since some of these coordinates are not 
mutually independent over the history of the motion, considerable complex- 
ity is introduced into the general procedure for finding the equations 
from the Lagrangian (see, e .g., sec . 9 1  of ref. 9) . The procedure adopted 
in this section is equivalent to the general formulation, but may be 
somewhat easier to follow. 

Force equations.- The kinetic energy expression is given by 
equations (6) and (21) 

- -s -s (The linear velocity vector, u, is given in components by 
Except for the same caution concerning the positive senses of v and w 

U = ul +v2 +w3'. 
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that was voiced earlier with respect to the q and r components of the 

angular velocity R , the labels u,v,w are those customary in aircraft 
dynamics.) 
expression above after it has been noted that the quantities 

and a K . E  ./an 
of the satellite. 
by differentiating the linear momentum totally with respect to time. 
derivative operation is given in rotating coordinates by the right-hand 
side of the equations 

4 

-S-p 

The inertial terms can be obtained from the kinetic energy 
aK.E./hTT 

can denote the linear and angular momenta, respectively, 

- 
-S-p 

The inertial terms of the force equation follow directly 
This 

This operation gives rise to the terms usually appearing in the force 
equations and which will be found on the left in equation (32) below. 

The right-hand side of the three force equations will be derived 
from the potential function given in equation (12). 
the negative gradient of this potential, and is given directly in the 
set by the equation 

The total force is 
j3 

The values of the components of force are obtained by the appropriate 
operations on equation (12) and are given by 



X 

L 

c 

. 

These components are resolved into the s coordinate system by the 
transformation (9 ) (0 )  ( q )  . 
can be taken from the table in (14) to give the right-hand sides of the 
following force equations: 

The direction cosines of the transformation 

Moment equations.- As in the force equations, the inertial terms of 
the moment equations can be obtained from the kinetic energy expression 
after it has been noted that the quantity can denote the 
angular momentum of the satellite. The inertial terms of the moment 
equations follow directly by differentiating the angular momentum totally 
with respect to time. 
coordinates by the right-hand side of the equation 

-s-e aK.E./aQ 

This derivative operation is given in rotating 

This operation gives rise to the terms usually appearing in the moment 
equations and which will be found on the left in the equations below. 

1 ~~i + qr(1, - I ~ )  + (G + pq)I13 = L 

12q + rp(1, - 13) + (r2-p2)II3 = M 

13C +pq(12 - 11) + (6 - qr)I13 = N 

(33) 

The quantities appearing on the right in these equations, L, M, and 
N, are the components of torque applied to the satellite. They, like 
the components of force in equations (32), can be obtained by differen- 
tiating the potential energy expression with respect to the proper param- 
eters, in this case Cp, $, and 0 .  These partial derivatives, or their 
negatives -aV/aCp, -&/a$, and -&/a0 are the components of torque in the 
coordinate system in which the differentiations are performed. This is 
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- 
a nonorthogonal system based on the unit vectors is! the direction of 6; 
3', the direction of $; and $!', the direction of 8 .  It is necessary 
now to determine the law of transformation that will bring these components 
of torque into the body coordinate system. 

- - 
. 

The usual procedure in determining a transformation law is to look 
for an expression containing components of torque and whose transformation 
law is known. The rotational power of the system, given by the equation 

is a suitable expression. It is a scalar, entirely independent of 
coordinate systems. Since the transformation of the angular velocity 
p P  = @ p + j r g ' + ( j ~ 7  
formation of the torque components can be deduced. If the components of 
torque -dV/&p, -&/a+, and -aV/& are defined as T o  T., and T o ,  
respectively, equation (34) can be written in the form of the product of 
a row and a column matrix as follows: 

is known from equations (17) and (18), the trans- 

Cp' + e 

Now equations (18) and (19) give the equalities 

After this transformation has been substituted into equation (35), a 
slight rearrangement gives the equation . 
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c 

Since the angular velocity components can have any values, equation (36) 
gives the following values of L, M, and N: 

where 

. 
In the case mentioned before, where. I, = I, and I,, = 0, equations (37) 
and (38) reduce t o  the more manageable expression 
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The latter equations can also be obtained directly from (37) and the 
potential function which f o r  this case becomes 

The first of equations (39) deserves some attention. It says that 
the torque about the body r o l l  axis, the axis of symmetry, vanishes and 
therefore this component of momentum is conserved. 
show that the component of angular velocity p is constant in this case. 
By choosing the coordinates in the order Jr,Q,cp, instead of the order 
€l,Q,cp 
form 

In fact, equations (33) 

as we have done, the rotational potential can be brought into the 

If, in addition, the rotational energy were to be conserved, that is, if 
equations (33) could be integrated once, the whole rotational problem 
could be solved by quadratures. The problem would resemble that of a 
symmetrical top with one point fixed and acted on by gravity. That this 
integral does not exist, however, will be seen in the following section. 

ENERGY IN'IEGRAL 

When one has obtained equations of motion from a force field derived 
from a potential function which is not a function of time, he usually 
expects to be able to integrate the equations and show that the total 
energy is a constant. 
readily into the proper form, as will be shown. It will also be shown, 
however, that the torque equations do not, so that the sum of the two . 
partial integrals is not a constant. The reason is that the equations 
are referred to the center of mass of the body, not to the center of 
gravity. As the reference point of forces and torques is shifted, the 

The force equations given in equations (32) fit 



forces remain the same, but the torques are changed by a term consisting 
of the vector cross product of the displacement of the reference point 
and the forces that acted on the original point. 

?- 

The equations (32 )  can be written in the form 

m(C+qw - r v )  = Fls 

m(G+ru -pw) = FZS 

m(G +pv - qu) = F,, 

Multiplying the first by u, the second by v, the third by w, and 
adding, one has 

m(u;+w+w?) = Fl,u+F,sv+F,sw 

This can be written in the form 

The last expression on the right follows from the invariance of 
power previously discussed. It shows the forces and velocities written 
in the P set of coordinates. Comparison with equation ( 3 0 )  shows that 
it can be written -V.VV, where V is the potential energy and V is 
the vector velocity. Since V is not an explicit function of time, 

. where the subscript on the derivative on the right means that the 
translational parameters alone are being considered. 
equation (41), one sees that the expression on the left is the time 
derivative of the translational part of the kinetic energy. 
equation (42), equation (41) can be written in the form 

Referring to 

Hence, using 
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This equation shows the proper form to be integrated and to equal a 
constant. 
eters cp and 8 

If the potential energy did not contain the rotational param- 
as it does, equation (43) would be immediately integrable. 

We turn now to the moment equations 

1 ~6 + qr(1, - I ~ )  + (G + pq)I13 = L 

12e+ rp(1, - 13) + (r2-p2)I13 = M 

I$ + pq(1, - 11) + (c  - qr)I13 = N 

( 3 3 )  

Multiplying the first of these equations by p, the second by q, the 
third by r, and adding them, one obtains the equation 

1,pG + 12qe + 13r$ + I13(Gr + p?) = Lp + Mq + Nr 

which can be written in the form 

- (1,p2 + 12q2 + 13r2 + I at 2 

The right-hand side of (44) can be expanded to the form 

(44) 

Comparing the first term above with equations (34) and ( 3 5 )  shows that 
it is - dt Vrot. Equation (h), therefore, can be written in the form d 



c 

I -  

Adding equations (43) and (45) gives 

d (K.E. + V I  = [MI 
dt 

(45) 

(46) 

The power term on the right above spoils the constancy of the total 
energy given within the parentheses on the left. 
are small, were zero, then 
would have exactly the Poinsot motion described in reference 10. 
some reason or another, the right-hand side of equation (46) disappeared 
but Vrot 
that 
the preceding section. 
and the soliitlon coiild be eiipi-essed In a, mrmer aaalogcas, but not 
identical, to that concerning a heavy symmetrical top such as given in 
reference 1I . 

If the torques, which 
Vrot would also be zero and the satellite 

If, for 

did not, and if the satellite had such rotational symmetry 
I, = I,, then we would have the situation mentioned at the end of 

The equations of motion would again be integrable 

SMALL OSCILLATIONS OF A SYMMETRIC VEHICLF: IN A CIRCULAR ORBIT 

The stability of small oscillations about an equilibrium_ position 
of the satellite can be studied by using equations (20), (33), and (39) . 
Let the satellite be symmetrical, and the equations be written in 
principal axes, so that I, = I, and I,, = 0. Furthermore, for simplicity, 
assume a polar orbit. Then since i = Y = 0 equations (20) become 

which can be inverted to 



32 

Equations (33) and (39) take the  form 

116 = 0 

. .  
P 

q 

r 
- I  

(49) 

The f i r s t  equation (49) shows that p i s  constant.  Multiplying ( 5 0 )  by - 8  

ccp and (51) by -sCp and adding gives 

3GQ ~~(Cvcp - -i.srp) - ~,p(qsrp + rccp) + Ilp(qscp + rccp) = - a3 ( I ~  - I , ) C J I S ~ ~ ~  

Because of equation (47),  t h i s  equation can be wr i t ten  as 

and using equation (48) t h i s  becomes 

Again, multiplying ( 5 0 )  by 
equation (47) gives 

scp, and (51) by crp, adding, and using 

. 
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\ -  

I 
- -  - 3GM, (I, - 12) s2ecqs* 

a3 

With the help of equation (48), the equation becomes 

Equations (52) and (53) can be used to examine two cases. In the 
first case the angles and angular rates are assumed small so that second 
and higheS order terms can be neglected. Then, taking a circular orbit, 
so that 0 and are constants and neglecting the effects of cp, q ,  
and 8 on the orbit the equations become 

.. 
I28+I1pJr = - - 3GM, a3 (11 -1*)e 

(54) 

These equations indicate that the motion will be stable if 
the motion consists of undamped oscillations in bath yaw and pitch. The 
yaw and pitch motions are coupled by the arbitrary spin, p, of the body. 
The frequencies of the oscillations are obtained from the system determi- 
nant in the following manner. Dividing equations (54) by I, and taking 
their Laplace transform gives the system of equations 

Il>12. Then 

The s in these equations is the transform variable. The dependent 
variables are understood to be functions of s. The quantities f, and f, 
are functions of the constant 6 and of the initial conditions. The 
system determinant is 
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This expression can be written in the factored form ( S ~ + W ~ ~ ) ( S ~ + W ~ ~ )  

where 

2 
w12 = 1 - - 3% 11-12 1 3GM, I1 

2 [ a3 ( 1, ) + (2 .> + b2] + {r [a. ( 
(2 P) + h2] - a3 3- ( I1 -12 ) h2} 

+ 

2 2 11 2 

and 

Since 
determinant are imaginary and occur in conjugate pairs. 
sists of two oscillatory modes in yaw and pitch with the frequencies 
and 9. 

w12 and w22 are positive and real, the four roots of the 
The motion con- 

w1 

The variation of these frequencies with inertia moment ratio, Il/I2, 
for various values of spin is shown by the solid and dashed lines in 
figure 2. 
and 11p/126 
been realized that the relationship 
orbits. 

The dependence of these frequencies on the parameter 11/12 
can be obtained from equations (56) and (57) after it has 

%/a3 = h2 holds for circular 
Then these equations take the forms 



35 

. 
and 

Equation (58) is shown by the solid lines in figure 2 for inertia 
moment ratios greater than unity. The frequency ratio can be seen to 
tend toward a linearly increasing dependence on.the inertia moment ratio 
for a given value of the spin parameter 
also increases with the spin parameter. 

11p/12.0. The frequency ratio 

Equation (59) is shown by the dashed lines in figure 2 for inertia 
moment ratios greater than unity. 
at 
approaches unity as the yaiue of spin vanishes, or for constant values 
of the parameter Ilp/12@. 
go toward zero. 

These curves rise from zero frequency 
I, = I,, the value for a sphere, to a horizontal asymptote that 

As the spin increases, however, these curves 

The second case of interest has an equilibrium position in the 
-2 neighborhood of 8 = n/2.  Letting 8 = 7 - ~ / 2  and then assuming the 

angles and angular rates to be small, and bearing in mind that 
one gets for equations (52) and (53) 

C&/a3=0 , 

This time the oscillations are stable if the inertia moment ratio is less 
than unity. 
and pitch axes coupled by the arbitrary spin. 
given by the square roo t s  of the following positive real numbers 

'Then the motion is again purely oscillatory with the yaw 
The frequency ratios are 
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l +  

and 

I 

The variation of these frequencies (solid lines for eq. (61) and dashed 
lines f o r  eq. (62)) with 11/12 and 11p/126 is shown in figure 3. 

As the moments of inertia I, and I2 approach each other, 
equations ( 5 8 )  and (61) also approach each other. 
equations (59) and (62) approach zero. 
of a sphere. The torques disappear and an oscillation is superimposed 
on a constant rate of rotation. Although this description following from 
the solution of equations (54) and (60) for is qualitatively 
valid, the small angle assumptions underlying these are patently violated 

At the same time 
"his inertial condition is that 

6 and 4 

For a final remark on-equations (34) and ( 6 0 ) ,  it can be noted that 

from zero by an amqunt proportional to the spin, p, of the 
the yaw equation term 
yaw angle 
body and its orbital frequency 0. 

I,p0 displaces the equilibrium position of the 
$ 

CONCLUDING RFSIARKS 

The purpose of this report has been to calculate the equations of 
motion of an artificial satellite, not for orbital studies, but in a form 
convenient f o r  stability studies. For this reason, expressions for the 
kinetic energy and potential function were derived, and the force and 
moment equations derived from them. Two sets of equations were derived. 

. 

c 
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. The first was obtained directly 
kinetic and potential energies. 
coordinates. The second set of 

The potential function was 
potential of two mass points in 

from the Lagrangian function of the 

equations is in body coordinates. 
They are the equations in generalized 

derived by expanding the gravitational 
a Taylor's series to include all the mass 

points of the earth and the satellite. The expansion, which was stopped 
so as to include only second-order effects, was found to give an 
expression for the potential that was easy to evaluate in terms of inertia 
quantities fixed in the body. 
potential energy function, the effects of the earth's oblateness and 
vehicle's mass distribution are separate. Because of this separation, 
the oblateness of the earth affects only the orbit of the satellite, and 
does not give rise to torques about the vehicle itself. 

To the order of expansion used for the 

The existence of a gravity gradient, however, combines with the fact 

Some care is required in transforming 
that the mass of the vehicle is distributed in space to give rise to 
torques acting about the vehicle. 
these torques into body axes since in being obtained from the potential 
function they are expressed in a nonorthogonal coordinate system. The 
transformation law is derived in this report from the scalar invariance 
of the rotational power. 

* The center of mass of the vehicle is chosen as the reference point 
in the equations of motion. This choice is convenient since it is fixed 
in the body. But it is shown to have the disadvantage of eliminating 
the total energy as a first integral of the motion. b 

Both sets of the equations of motion show that all coordinates are 
mutually coupled. 
show that the torque about any axis of symmetry vanishes. 

When they are written in principal body axes, they 

Under the assumptions of mass symmetry, circular orbit, and small 
angles, the body moment equations show that the pitch and yaw coordinates 
are coupled by any spin about the axis of symmetry. There is a position 
of stable equilibrium for a body in which the axis of least inertia 
moment points toward the center of the earth. 

Ames Research Center 
National Aeronautics and Space Administration 

Moffett Field, Calif., April 20, 1939 



APPENDIX A 

ALTERNATE DERIVATION OF POTENTIAL ENERGY FUNCTION 

The derivation of the potential energy function that appears in the 
text is concise, but the following derivation may be more illuminating. 
In the interest of simplicity, the earth will be considered spherical. 
Since the extension to an oblate earth would f o l l o w  the same pattern, 
little is lost by this assumption. 

The potential energy of earth-satellite system is given by 

where p, the distance from the center of mass of the earth to mass point 
dm, is given by 

* 

(A2 1 
2 2 112 

p = C(X+E') +(y+r1')2+ (Z+W 1 
A 

The coordinates of the center of mass of the satellite are x, y, and z 
in a stationary coordinate system. The coordinates of mass element dm 
are 5 ,  7, and I: relative to the satellite mass center. With p-l 
denoted by 
series about the satellite mass center. The expansion has the form 

f ( p )  , this function can be expanded in terms of a Taylor ts 
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. 

Normally a typical term of this expansion would appear as, say, 
E af(a)/aE Ip=a rather than E af (a) /ax. But an examination of the 
form of (A2) shows that the operations are equivalent. 

Multiplying equation (A3)  by dm, rearranging, and integrating gives 

The operation af/a in this equation stands for af(a)/a. The terms in 
the first braces in (A4) vanish because E ' ,  T', and <'  refer dm to 
its center of mass. The quantities in brackets within the second pair 
of braces now receive attention. The term (7 l2 + f ")dm is added to 

and subtracted from the quantity within the first brackets. "l ( E  l2 + f '2)aTn and "1 ( E  t2 + qt2)dm are added and subtracted in the 

second and third brackets, respectively. 

ax 
Similarly 

aY a Z  

Equation (A4) becomes 

f(p)am = a + 1 s 
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where 

2 2 
Now, since a2f/ax2 + a f/ay2 + a f/az2 = 0, the first term in braces in 
(A5) is zero. The resulting equation can be expressed in the form 

f(p)dm = E - l [aq s 2 ax ay aZ 

- 1 - - - V .  1,1vf(a) a 2  

the potential energy, therefore, is 

There remains to evaluate the derivatives in equation ( A 5 ) .  Since 

-112 
= a-1 f = cx2+ y' + 221 

we have 
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. 

i 

Substituting these values into the expression f o r  V 1 , ' V f  (a) gives 

where the trace of the matrix is just the sum of the main diagonal terms: 

trace I ~ '  = [ I ~ ' + I ~ '  +I,'] 
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7. Doolin, Brian F.: The Application of Matrix Methods to Coordinate 
Transformations Occurring in Systems Studies Involving Large 

I Motions of Aircraft. NACA TN 3968, 1957. 
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Figure 2.- Oscillation frequency variation for inertia ratios greater 
than unity; circular orbit. 
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Figure 3.- Oscillation frequency variation for inertia ratios less than 
unity; circular orbit. 
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